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Outline

• Part I: From AI to storage to storage impact

• A bit autobiographical - apologies


• Part II: Technology-driven research

• A bit technical - further apologies


• Along the way: Lessons learned



Part I: From AI to Storage



Undergrad at Michigan: AI? Or not AI?

• Like everyone, AI was my first idea


• Got a job working at a UM robotics lab 

• Why I stopped working on AI

• The story of two robots 

• Lesson 
• When working on something, ask: how can I be the best? 

What skills and know-how are required?



My next choice: Computer Architecture

• Why architecture?

• A chance visit to the bookstore


• Lesson

• Never underestimate the power 

textbooks can have



From Architecture to Systems
• New project at UC Berkeley: Network of Workstations (NOW) [http://now.cs.berkeley.edu/]


• Basic premise

• Supercomputers of the future would be made from commodity PCs

• Modern networks were a key enabler (“3 orders of magnitude”)


• Thus, most of the work lay in systems software 
• Distributed operating systems, file systems, high-speed networking, etc.


• Thus, systems it was



First Few Projects
• “Empirical Evaluation of the CRAY-T3D: A Compiler Perspective”  

Remzi H. Arpaci, David E. Culler, Arvind Krishnamurthy, Steve G. Steinberg, Katherine A. Yelick. ISCA 1995

• 	

• “The Interaction of Parallel and Sequential Workloads on a Network of 

Workstations” Remzi H. Arpaci, Andrea C. Dusseau, Amin Vahdat, Lok T. Liu,  
Thomas E. Anderson, David A. Patterson. SIGMETRICS 1995


• “Effective Distributed Scheduling of Parallel Workloads” 
Andrea C. Dusseau, Remzi H. Arpaci, David E. Culler. SIGMETRICS 1996


• Mostly performance analysis and scheduling… so, what next?
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A Class Project in Databases

• Took graduate database course

• Not my main interest …  

• Had to pick a final project… but what?

• Happened to read a paper

• So much to like! 

(world records, cache performance) 

•  

Lesson

• Use papers you like as inspirations

Abstract 
A new sort algorithm, called AlphaSort, demonstrates that commodity processors and 
disks can handle commercial batch workloads. Using commodity processors, memory, 

and arrays of SCSI disks, AlphaSort runs the industry-standard sort benchmark in seven 
seconds. This beats the best published record on a 32-CPU 32-disk Hypercube by 8:1. 

On another benchmark, AlphaSort sorted more than a gigabyte in one minute. 
AlphaSort is a cache-sensitive, memory-intensive sort algorithm. We argue that modern 

architectures require algorithm designers to re-examine their use of the memory 
hierarchy. AlphaSort uses clustered data structures to get good cache locality, file 
striping to get high disk bandwidth, QuickSort to generate runs, and replacement-

selection to merge the runs. It uses shared memory multiprocessors to break the sort 
into subsort chores. Because startup times are becoming a significant part of the total 
time, we propose two new benchmarks: (1) MinuteSort: how much can you sort in one 

minute, and (2) PennySort: how much can you sort for one penny.



Project Proposal
• Build external (disk-to-disk) parallel sort on cluster

• Use it to break world record!


• Feedback from professor

• Not an interesting proposal; it’s unlikely you will beat professionals


• Our decision: Do the project anyhow


• Lesson

• Sometimes, you have to ignore advice (even from smart people)



Result: NOW-Sort
• Optimized every aspect of parallel sort

• Network communication and overlap

• CPU algorithm

• Disk access methods 

• Result

• Scalable, high performance

• Got the most out of available machines


• Paper

• “High-Performance Sorting on Networks of Workstations” 

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, David E. Culler,  
Joseph M. Hellerstein, David A. Patterson. SIGMOD 1997
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Main Lessons from Sorting
• Storage is important 
• All applications do I/O

• Many interesting applications do a lot of I/O


• Storage is complex 
• Complexity can be a source of challenges and opportunities


• Storage is fun to optimize 
• Because when you do, the thing you optimized goes a lot faster!



Next Work: Search for Balance
• From a used computer architecture book: 

Amdahl/Case “Rule of Thumb”: A balanced computer system  
needs 1 MB of main memory capacity and 1 Mbit per second  
of I/O bandwidth per MIPS of CPU performance


• After sorting work, asked

• What is a balanced cluster of workstations?

• How does that compare to other types of systems?


• Result: “The Architectural Costs of Streaming I/O:  
A Comparison of Workstations, Clusters, and SMPs”  
Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau, David E. Culler,  
Joseph M. Hellerstein, and David A. Patterson. HPCA ’98


• Lesson

• Read widely and take notes
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Graduation Dilemma
• Discussion with Patterson (advisor)

• Dave: “You should graduate”

• Me: “I want to do one more thing”

• Dave: “OK”


• Why?

• My reasoning: a “systems” student should build a system


• But what to work on?



• An interesting thing about NOW-Sort

• Not just how we did it but when 

• Record-breaking runs were always done at 4am


• Why?

• No one else was using the machines then

• Sorting on 100 machines was sensitive to the 

performance of the slowest 1 machine


• Lesson

• Keep your eyes open when doing research;  

doing so may unveil your next line of work

A Tiny Observation
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River
• How to make sorting run fast,  

even if one machine isn’t?

• i.e., how to make sorting run well  

during the day and night?


• “Cluster I/O with River: Making the  
Fast Case Common”  
Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft,  
David E. Culler, Joseph M. Hellerstein, David A. Patterson, Katherine A. Yelick. IOPADS 1999


• Pre-cursor to large-scale data processing environments

• i.e., MapReduce (1/6th of the papers cited by MapReduce paper are in this talk)

Static

Dynamic



Assistant Profs @ Wisconsin
• So, what to work on?

• Wanted to get away from dissertation work

• Who thinks large-scale clusters doing big data processing is important, 

anyhow? (oops)


• But wanted to grow strength in storage, I/O

• Why? As before, interesting, complex, important

• But also, opportunity: A growing storage industry


• But, need to be specific



Key: Measure Then Build
• Previously at USENIX ’19: “Measure, Then Build”

• Main idea: use measurement to learn and to find real problems 

 
 
 
 
 
 

• Lesson

• Always think about what can be measured, and how to learn from it

Build

Measure Understand

Learning Opportunity

Remember: Research is 
a learning exercise

New 

Idea



Attack a Classic Problem: Costs of Layering

• Systems are built in layers

• Reduces complexity

• Allows independent groups to build, optimize pieces


• But inherently problematic

• Information loss

• Control loss


• Can we use measurement to help?

File System

RAID

Disk Disk Disk Disk



An Idea: Gray Box Systems
• Andrea called me, said “gray box systems”

• Idea: Use measurement in system itself 

to unveil properties of layers

• “Information and Control in Gray-Box Systems”  

Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau 
SOSP ’01


•  
Example: Determine contents of file cache

• Probe (access a page and time it)

• Deduce (conclude which files must be in the cache)

• Benefit (schedule file accesses differently, to use in-cache data first)



Refining Gray Boxes
• Original view: Looking down the stack


• New idea: What if the system below could  
figure out things about the system above it?


• Called Semantically-Smart Disk Systems (SSDs)

• Bad acronym (oops!) but interesting idea

• “Semantically-Smart Disk Systems” M. Sivathanu, V. Prabhakaran, I. Popovici, T. Denehy,  

A. Arpaci-Dusseau, R. Arpaci-Dusseau. FAST ’03


• Lesson

• Ideas can be “close to right”; once you have one, keep thinking and refining

File System

Disk



Examples
• “Improving storage system availability with D-GRAID” 

M. Sivathanu, V. Prabhakaran, A. Arpaci-Dusseau, R. Arpaci-Dusseau. FAST ‘04

• A RAID system that understood which blocks belonged to which files

• Thus, could place some files within failure boundaries, to preserve 

in case of excess failure


• “Life or Death at Block-Level”  
M. Sivathanu, V. Prabhakaran, A. Arpaci-Dusseau, R. Arpaci-Dusseau. OSDI ’04

• A disk that could determine if blocks were live, and scrub those that were not


• And a few others

• About caching (ISCA ’04), databases (FAST ’05), and even theory (FAST ’05)


• Impact of semantically-smart disks 
• ~750 citations across the body of work, and a few patents

• Many systems in the real world use block-level introspection



Part II: Technology-Driven Research



Beyond Measurement
• Measurement-based approach works well

• e.g., we have written ~10 papers just analyzing the reliability of  

various storage systems(!)


• But there are other methods to generate research


• Another general method: Technology-driven Research

• Fundamental technologies are always being altered

• What is the impact on software systems? 



In The Beginning

• The hard drive

• Invented in 1956 (IBM 305 RAMAC)


• Specs

• 50 24-inch platters

• Stored about 5 MB

• Cost about $30k/month to use(!)

https://www.backblaze.com/blog/history-hard-drives/



Smaller, Faster, Cheaper?

• Next generation: IBM 1311

• 14-inch platters in packs 

(each about 2 MB)

• Only the size of a washing machine!



Personal Drives

• Next leap: Into PCs

• 1980

• Shugart Tech 5MB drive

• 5.25 inch platter

• $1500 (about $5k today)


• Company eventually changed name to Seagate…



Disruption: Solid-State
• Solid-state: No more moving parts

• Flash-based Solid-State Drives (SSDs)

• 1988 invention (Fujio Masuoka)

• But not really a disk competitor until mid 2000s


• Much different characteristics

• Disks: 10s of milliseconds

• SSDs: 10s-100s of microseconds


• But cost is still much higher  
than hard drives

• At least, for now…



And The Disruptions Continue

• Intel/Micro X-Point technology (“Optane”)

• In “Disk” and “Memory” form factors


• Very expensive (now)


• Promises even better performance

• Low latency operations (<10 microsecs)

• Bandwidth similar to flash-based SSDs



Remainder of Talk

• Impact of SSDs on log-structured merge trees

• WiscKey 

• Impact of Optane on caching

• Orthus 

• Impact of Optane on file system structure

• uFS



WiscKey: LSMs Meet SSDs
• Key-value stores are important

• Used in many important applications and services


• Often implemented as log-structured merge trees (LSMs)

• Optimized for write-intensive workloads

• Widely deployed (BigTable, LevelDB, HBase, Cassandra, RocksDB…)


• But, technology has changed

• Designed in the era of hard drives

• Do LSMs work well on SSDs?



LSM Background

• Writes buffered in memory, then sorted and written into a file


• Over time, many such files collect

• Periodic compaction needed


• Good for optimizing writes to disk

• All sequential



LSM Insert and Lookup

• Inserts: May cause many compactions 
Lookups: May traverse many levels of the tree

Insert Lookup



Problem: I/O Amplification
• Random load: 100GB database 

• Random lookup: 100,000 lookups 


• Massive amplification

• Reads

• Writes


• Made more sense for hard drive

• Doing more I/O, but sequential

• But not for SSD…



Solution: WiscKey
• Main idea

• Separate keys from values 
• Keep keys in LSM and values in log


• Results

• Significant reduction in I/O amplification

• Sometimes 100x faster than the state of the art


• “WiscKey: Separating Keys from Values in SSD-conscious Storage”  
Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. FAST ‘16


• Lesson

• Use a good idea again (in different context) 



Performance: Load



Performance: Lookups



WiscKey Summary

• WiscKey: an LSM-tree based key-value store 

• Decouple sorting and garbage collection by separating keys from values 

• SSD-conscious design (many other details)

• Significant performance gains across range of workloads 

(often 10x, sometimes 100x!)


• A good example of technology-driven research

• And graduate student persistence! 



Outline

• Impact of SSDs on log-structured merge trees 
• WiscKey 

• Impact of Optane on caching 
• Orthus 

• Impact of Optane on file system structure

• uFS



Classic Caching

• Classic Caching

• “Hot” data moves towards CPU, 

“Cold” data moves away


• Central assumption

• Performance further up the hierarchy 

is notably higher than lower down

• Data movement based on this assumption 

(e.g., hundreds of papers on replacement algs)

cpu

cache

memory

disk



Question: Can We

Do Better Than Caching?

• Assumptions

• Performance device delivers 

Bp bandwidth, has Cp capacity

• Capacity device delivers 

Bc bandwidth, has Cc capacity


• Normally, Bp >> Bc, and Cc >> Cp

• Thus, caching tries to deliver ~Bp 

performance while seeming to have Cc 
capacity - “an ideal device”

Bp

Bc

Cc

Cp

“Ideally, one would desire an indefinitely large memory capacity such that any particular binary digit number would be immediately 
available. It does not seem possible to achieve such a capacity. We are therefore forced to recognize the possibility of constructing 
a hierarchy of memories, each of which has greater capacity than the preceding but which is less quickly accessible” -JvN (1946)



But What If Bp not >> Bc?
• Assume

• H = Hit ratio


• What is T, the time to access data, given H?

• T = H * Thit + (1 - H) * Tmiss


• where…


• Thit = 1 / Bp 

• Tmiss = 1 / Bp + 1 / Bc = (Bp + Bc) / (Bp * Bc) 

• Solving for bandwidth (inverse of T):

• Boverall = (Bp * Bc) / (H * Bc + (1 - H) * (Bp + Bc))


• (Assumes just one request at a time)



Model: Results

• Caching results

• Higher hit rate,  

approach max perf 
of performance device


• With higher bandwidth 
from “capacity” device, 
low miss rates are  
more tolerable
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A Different Approach: 
Splitting (Offloading)

• Same as before

• Performance and Capacity devices


• Splitting (Offloading): Alternative to caching

• Directs some traffic to one device,  

other traffic to another

Bp Bc

Cc
Cp



Splitting Model
• Assume

• S = Split ratio


• Solve for T, time to service request split across devices

• T = max(S * Tp, (1 - S) * Tc)


• where

• Tp = 1/Bp 

• Tc = 1/Bc 

• Solve for throughput

• Boverall = 1 / max(S/Bp, (1-S)/Bc)


• (Assumes many outstanding requests)



Splitting: Results

• Splitting results

• Getting “right” split  

delivers sum of 
performance of both 
devices


• Again, larger sensitivity to 
correct split when gap in 
performance is large 
(100:1 vs 100:100) 0
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Caching vs. Splitting
• When Bc nears Bp, 

caching gives away 
a lot of performance


• (in this example, 2x!)


• Result: Capacity devices can 
actually deliver performance


• Lesson

• Modeling can be useful 0

50

100

150

200

0 10 20 30 40 50 60 70 80 90 100

Cache Split

Bandwidth 
(MB/s)

Hit or Split Rate (%)

Assumes 100:100 Ratio



Solution
• How to take advantage of multiple devices in hierarchy?

• Example: Flash-based SSDs and Optane


• Approach: Non-hierarchical caching

• Use caching as base approach

• Add read offloading (directing reads to capacity device) 

as needed to maximize bandwidth of both devices


• “The Storage Hierarchy is Not a Hierarchy: Optimizing Caching on Modern Storage 
Devices with Orthus” Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Alagappan, Rathijit 
Sen, Kwanghyun Park, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. FAST 2021


•



Classic Caching

• Always admit to performance layer on misses

• Even if cache bandwidth is fully saturated


• Send all requests to performance tier

• Even if bandwidth is available in capacity tier


• Decisions are static in nature

Performance Layer

Capacity Layer

Requests

Demote Promote



Non-Hierarchical Caching

• Decides whether to admit data into upper tier

• Promote sometimes (not always) on misses


• Decides to direct (some) reads to lower tier


• Decisions made dynamically

• Change over time

Performance Layer

Capacity Layer

Requests

Demote Promote 
(sometimes)



Results

• Classic caching: Bounded by single-device performance

• Orthus: Utilize full device bandwidth from both
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Outline
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• WiscKey 
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• Impact of Optane on file system structure 
• uFS



Problem: Devices Fast, Kernel Less So

• System call handling: A few microseconds


• In hard-drive era

• OK, because disk took a few milliseconds


• In modern era

• Not OK, because device can take a few microseconds



Alternate Architectures
• Semi-microkernel 
• Based on old “microkernel” approach

• But, not a “full” microkernel - instead, just single 

subsystem is hoisted into user space

• Subsystem built in user space, 

can directly control device

• Networking world (e.g., Google’s Snap) has been 

exploring this approach


• Filesystem semi-microkernel 
• What we investigate here


• Lesson

• Explore ideas from other fields

Operating System

App

Operating 
System

App FS

Classic OS

FS Semi-microkernel



Advantages
• Developer Velocity

• Tools and libraries for “application” code

• Rapidly adopt new hardware and tailor to apps


• Performance

• Optimize for device access (avoid OS overhead)

• Scale filesystem independently from apps


• Simplify sharing and permission

• Untrusted aps cannot access the device

Operating 
System

App FS

FS Semi-microkernel



uFS: A Filesystem Semi-Microkernel
• "Scale and Performance in a Filesystem Semi-Microkernel” Jing Liu, Anthony Rebello, Yifan Dai, 

Chenhao Ye, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. SOSP 21


• Build for performance and scalability from scratch

• Fully functional with crash consistency

• Employs lock-free access for main data structures

• Dynamically partitions inodes to filesystem threads

• Adapt # of uFS cores according to filesystem demands

• Implemented by C++ (~35K LoC)


• uFS offers good base performance and excellent scalability

• 1.2x-4.6x throughput compared to ext4 when running 10 LevelDB instances



Lessons Summary
• When working on something, ask: how can I be the best?

• Never underestimate the power of textbooks

• Use papers you like as inspirations

• Sometimes ignore advice

• Keep eyes open when doing research

• Read widely and take notes

• Ideas can be “close to right”; keep thinking and refining

• Always think about what can be measured, and how to learn from it

• Ask how new technologies change how we build systems

• Use good ideas again (in different contexts)

• Modeling can be useful

• Explore ideas from other (sub)fields



Last Lesson: Thank People
• Co-conspirator: Andrea Arpaci-Dusseau


• Ph.D. Students

• Muthian Sivathanu 
• John Bent 
• Vijayan Prabhakaran 
• Nathan Burnett 
• Tim Denehy 
• Todd Jones 
• Ina Popovici 
• Lakshmi Bairavasundaram 
• Nitin Agrawal 
• Haryadi Gunawi 
• Joe Meehean 
• Swami Sundararaman

•  


•  

• Sriram Subramanian 
• Yiying Zhang 
• Yupu Zhang 
• Thanh Do 
• Vijay Chidambaram 
• Lanyue Lu 
• Tyler Caraza-Harter 
• Thanu Pillai 
• Suli Yang 
• Leo Arulraj 
• Zev Weiss 
• Jun He 
• Ram Alagappan

•  


•  

• Aishwarya Ganesan 
• Yuvraj Patel 
• Jing Liu

• Kan Wu

• Anthony Rebello

• Yifan Dai

• Chenhao Ye

• Guanzhou Hu

• Kaiwei Tu

• Vinay Banakar

• Surabhi Gupta 

 
And many more  


•  Post-docs!

•  Masters and undergrads!


